
MESSAGE
BROKERS

What Is A Message
Broker?

Generally speaking, a broker is an individual or firm who arranges
transactions between a buyer and a seller. An example could be a real
estate agent that mediates the communication between the buyer and
seller. In the healthcare space, there are companies that function as
intermediaries that forward claims information from healthcare providers
to insurance payers, also known as clearinghouses.
Likewise, if we want to exchange messages between two distributed
software components, we need a mediator. This mediator is known as the
message broker. It receives incoming messages from a sender and sends
them to a receiver. This way the sender and receiver can be totally
decoupled.

A message broker acts as an intermediary platform in communication
between two applications.
It provides a way for exchanging messages from sending to receiving
points. Messaging enables distributed communication that is loosely
coupled. A message is sent to a destination by a sender, and can be
retrieved from the destination by the receiver. The sender and the
receiver don’t have to be available at the same time in order to
communicate. A good example of messaging from the real world, that
enables communication between people, is email.

Microservices,
Internet of Things
and Message
Brokers

There are many use cases where the message broker is a good fit
for a system, including currently popular topics in IT - Internet of
Things and Microservices. Therefore, the usage of a message broker
can also be beneficial in the healthcare industry. Microservice
architecture is used more often in healthcare ecosystems, as
healthcare applications are becoming more and more complex.
Also, healthcare is one of the application domains where IoT is of
enormous interest. When connected to the internet, ordinary
medical devices can collect invaluable additional data, give extra
insight into symptoms and trends, enable remote care, and
generally give patients more control over their lives and treatment.

Message Broker In
IoT

Today we have around 22 billion smart devices connected to the
internet. Considering the fact that about 7.7 billion people live on
our planet, it means that we have almost 3 smart devices per
person. This number is getting bigger every day and will
increase significantly in the years to come.

The growing amount of equipment connected to the internet
has led to a new term, Internet of Things (IoT). Simply put, IoT is a
set of devices that are able to interact with each other. With
development of new IoT devices, like smart houses and other
automatic systems, our everyday life becomes more and more
digitized.This way of technological development has brought
many advantages, but also some challenges, like the problem of
successful data exchange.

Benefits of
Message Brokers in
IoT

IoT devices generate a lot of traffic. They send different types of
information, like status reports and environmental measurements.
They also receive data, including instructions and data from other
devices.
Most of the IoT Implementations today use REST over HTTP based
connectivity from the client to the server. REST has certain limitations
that show up when a solution scales up to the larger number of
devices and more transactions per second.
REST is a one-way connection. The client connects to the server in
order to send or retrieve data. The server is not able to contact the
client directly, it needs to wait for the client to connect. This causes a
delay in performing an action.
Let’s take an example of activating an air conditioner from a mobile
app. The message from the mobile will hit the server instantly. But the
message from the server to the client needs to wait for the client to
connect to the server. Imagine that instead of having your phone ring
when someone is trying to call you, you had to pick up the phone
every few seconds just to check if somebody is on the line waiting to
talk to you - this is the same use case.

...25 times faster
than REST Calls.

Message broker allows the client to always stay connected providing two
way communication between the client and the server. This allows the
server to push the message to the client device making the device
respond to the command instantly as expected.
According to analysis and test reports, Message broker can transfer data
at a rate of 20 to 25 times faster than REST Calls.

Although there are many ways to handle IoT messaging, message
brokers are proving to be one of the best options.
The Internet of Things and cloud computing can be advantageous for
healthcare applications. Typical IoT topology in healthcare has 3 parts. A
set of connected sensors or handheld devices that are recording the
patient’s vital signals, electrocardiogram (ECG), electromyography (EMG),
body temperature, blood glucose (BG) and sending this information to
broker. Message broker redirects this data to cloud instances that
analyze and store processed data to a cloud storage. Finally the user can
access and monitor patient data from any location.

Microservices and
Message Broker

Microservices are an important innovation in
application development and deployment. The
microservice application architecture represents a
new approach to software development where
developers build the application as a set of modular
components or services, each with a specific task or
business targets. Each of these modular
components is known as a microservice.
Microservices have gained popularity in recent years
as an alternative to the more traditional monolithic
software architectures. Software developers have
adopted the microservices architecture as a means
of improving the process of developing, testing and
delivering software.

...fully
asynchronous
communications.

When using microservices, one of the biggest challenges is to decide
how services should communicate with each other.
Most developers choose to design REST API that each service exposes
and then have the other services invoke that API with a regular HTTP
client.
This has some advantages, but also many drawbacks.
For example, imagine that called service has crashed and can’t respond.
Your client service has to implement some kind of reconnection or
failover logic, otherwise, you risk to lose requests and pieces of
information.
Choosing message broker, on the other hand, is a good solution because
it adds a layer of abstraction between loosely coupled services and
allows for fully asynchronous communications.

Benefits of
Message Broker in
Microservices

Scalable
microservice
connectivity.

Without a message broker and queues or topics, producer services talk
directly to consumer applications through TCP or HTTP/REST. This works
fine when few services are talking to each other, but it becomes a
problem as we add more services to the system. Each new application
adds N number of new potential connections that need to be
incorporated within the system logic. Moreover, to cover service failure,
you’ll have to build in a way for the system to know how to find a new
instance if an application in your system or your server fails. In short, TCP
and HTTP/REST doesn’t scale in terms of application connectivity, and the
management of the communication between the connections doesn’t
scale either.

By contrast, in event-driven
microservice architectures
supported by messaging,
services produce events and
subscribe to the events they
want to use.
In this system services are not
directly connected, there is a
message broker between them,
so adding new service will not
increase communication
complexity.

Recovery from
error

In a non messaging environment, if the receiving service fails, then
ideally a new instance of that service will spin off, the sending service will
have to detect the failure and after a certain number of tries it will go on
the next instance. This perfect scenario is complex to engineer in the real
world. Now think how much more complex this gets as new applications
are added to the system.

In an event-driven message broker environment, services connect to the
broker, not to one another. Sending services emit events, and new
receiving applications connect to the broker and subscribe to events.
When a new event message is emitted to the broker, the messaging
system knows which applications are active and which are not and the
messages are sent only to active applications. In case of failure,
messages will arrive and stay in the queue, until the new application is
ready to receive them.

System ScalabilityIn the microservices where applications are directly connected, they can
affect the efficiency of one another. For example, if a sending service is
creating information at a rate that is too high for a receiving service to
process, a situation will arise where the sending service accumulates
messages while it waits for the slow receiving service to be ready. If you
want to increase the load for either type of services, you will have to add a
logic for spreading the load between the services.

Alternatively, in an event-driven messaging environment, all the
communication will go through the broker. You can track the rate of
messages being sent and received and also the size of the queue, and you
can determine is there a need to increase the number of services. Adding
new service of any type is easy, as they only have to connect to a message
broker and the services automatically share the workload. This is
incredibly useful in cloud applications where you can spin up applications
in busy times and spin them down when it gets quiet. The message
broker manages this process without the services having to know about
one another.

Message Filtering
and Routing

In situations where you have an application producing a number of
events, and particular events need to go to multiple services, then doing
this using HTTP/Rest or TCP is not easy. You would need to build a
complex communication system. Further, if there are different types of
events, and every service is consuming a certain subset of these events,
you would have to do filtering on sending or receiving end, either way it
would require too much work.

By contrast, in the event-driven messaging environments filtering and
routing of the information is built into the system. Services don’t have to
know about each other. All they have to be aware of is the event and how
to ask for it. The message broker can also contain rules about which
applications can subscribe to what type of messages, as well as what
applications are allowed to send specific types of events. The broker
authenticates services, and grants publishing and consumption
permissions based on that authentication.

In ConclusionMessage broker is not a new concept, but it is gaining in popularity
quickly. It can be used in many systems to improve communication
between services. Two interesting examples where messaging is a
good fit are Internet of Things and Microservices. We’ve seen that
message broker can introduce many benefits. It offers bidirectional
communication. Performances are better compared to HTTP/REST. It’s
easier to scale up the system or to recover from failure. It adds a layer
of abstraction between services and allows for fully asynchronous
communications, and so on.
Message broker systems are also becoming more common in
healthcare applications, as they are introduced with Microservices and
IoT. As the current trend of data growth continues, message broker
solutions will be used more often in the future.

ENABLING THE DIGITAL
HEALTH REVOLUTION!

